Novel Sequence Features of DNA Repair Genes/Proteins from Deinococcus Species Implicated in Protection from Oxidatively Generated Damage
نویسندگان
چکیده
Deinococcus species display a high degree of resistance to radiation and desiccation due to their ability to protect critical proteome from oxidatively generated damage; however, the underlying mechanisms are not understood. Comparative analysis of DNA repair proteins reported here has identified 22 conserved signature indels (CSIs) in the proteins UvrA1, UvrC, UvrD, UvsE, MutY, MutM, Nth, RecA, RecD, RecG, RecQ, RecR, RuvC, RadA, PolA, DnaE, LigA, GyrA and GyrB, that are uniquely shared by all/most Deinococcus homologs. Of these CSIs, a 30 amino acid surface-exposed insert in the Deinococcus UvrA1, which distinguishes it from all other UvrA homologs, is of much interest. The uvrA1 gene in Deinococcus also exhibits specific genetic linkage (predicted operonic arrangement) to genes for three other proteins including a novel Deinococcus-specific transmembrane protein (designated dCSP-1) and the proteins DsbA and DsbB, playing central roles in protein disulfide bond formation by oxidation-reduction of CXXC (C represents cysteine, X any other amino acid) motifs. The CXXC motifs provide important targets for oxidation damage and they are present in many DNA repair proteins including five in UvrA, which are part of Zinc-finger elements. A conserved insert specific for Deinococcus is also present in the DsbA protein. Additionally, the uvsE gene in Deinococcus also shows specific linkage to the gene for a membrane-associated protein. To account for these novel observations, a model is proposed where specific interaction of the Deinococcus UvrA1 protein with membrane-bound dCSP-1 enables the UvrA1 to receive electrons from DsbA-DsbB oxido-reductase machinery to ameliorate oxidation damage in the UvrA1 protein.
منابع مشابه
Predicted highly expressed and putative alien genes of Deinococcus radiodurans and implications for resistance to ionizing radiation damage.
Predicted highly expressed (PHX) and putative alien genes determined by codon usages are characterized in the genome of Deinococcus radiodurans (strain R1). Deinococcus radiodurans (DEIRA) can survive very high doses of ionizing radiation that are lethal to virtually all other organisms. It has been argued that DEIRA is endowed with enhanced repair systems that provide protection and stability....
متن کاملProtease Activity of PprI Facilitates DNA Damage Response: Mn(2+)-Dependence and Substrate Sequence-Specificity of the Proteolytic Reaction
The extremophilic bacterium Deinococcus radiodurans exhibits an extraordinary resistance to ionizing radiation. Previous studies established that a protein named PprI, which exists only in the Deinococcus-Thermus family, acts as a general switch to orchestrate the expression of a number of DNA damage response (DDR) proteins involved in cellular radio-resistance. Here we show that the regulatory...
متن کاملCorrection: Preserving Genome Integrity: The DdrA Protein of Deinococcus radiodurans R1
The bacterium Deinococcus radiodurans can withstand extraordinary levels of ionizing radiation, reflecting an equally extraordinary capacity for DNA repair. The hypothetical gene product DR0423 has been implicated in the recovery of this organism from DNA damage, indicating that this protein is a novel component of the D. radiodurans DNA repair system. DR0423 is a homologue of the eukaryotic Ra...
متن کاملGenome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics.
The bacterium Deinococcus radiodurans shows remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens. D. radiodurans is best known for its extreme resistance to ionizing radiation; not only can it grow continuously in the presence of chronic radiation (6 kilorads/h), but also it can survive acute exposures t...
متن کاملDeinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks
Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resista...
متن کامل